Министерство науки и высшего образования РФ ФГБОУ ВО «Ульяновский государственный университет» Инженерно-физический факультет высоких технологий

Саенко В.В.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ «ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА»

для студентов четвертого курса Инженерно-физического факультета высоких технологий Ульяновского государственного университета всех форм обучения Методические указания для самостоятельной работы студентов по дисциплине «Термодинамика и статистическая физика» / составитель: В.В. Саенко. - Ульяновск: УлГУ, 2019.

Настоящие методические указания предназначены для студентов четвертого курса Инженерно-физического факультета высоких технологий всех форм обучения, изучающих дисциплину «Термодинамика и статистическая физика». В работе приведены литература по дисциплине, основные темы курса и вопросы в рамках каждой темы, рекомендации по изучению теоретического материала, контрольные вопросы для самоконтроля. Студентам очной формы обучения они будут полезны при подготовке к практическим занятиям и к экзамену по данной дисциплине.

Рекомендованы к введению в образовательный процесс Ученым советом Инженерно-физического факультета высоких технологий УлГУ (протокол № 11 от 18 июня 2019 г.).

Оглавление

Литература для изучения дисциплины	4
Тема 1. Уравнение состояния	4
Тема 2. Первое начало термодинамики	4
Тема 3. Второе начало термодинамики	4
Тема 4. Энтропия	4
Тема 5. Термодинамические функции и тождества	5
Тема 6 Условия равновесия и фазовые переходы	5
Тема 7. Термодинамика необратимых процессов 1	5
Тема 8. Термодинамика необратимых процессов 2	5
Тема 9. Теорема Лиувилля	6
Тема 10. Каноническое распределение	6
Тема 11. Распределения Максвелла и Больцмана	6
	6
Тема 13. ФлуктуацииТема 13. Флуктуации	6
Тема 14. Излучение нагретых телтема 14. Излучение нагретых тел	
Тема 15. Статистика Бозе-Эйнштейна	
Тема 16. Статистика Ферми-Дирака	

Литература для изучения дисциплины

- 1. Розман Г.А. Термодинамика и статистическая физика. Псков: ПГПИ, 2003. 160 с.
- 2. Кондратьев А. С., Райгородский П. А. Задачи по термодинамике, статистической физике и кинетической теории. М.: ФИЗМАТЛИТ, 2007. 256 с

Тема 1. Уравнение состояния

Основные вопросы темы:

- 1. Основные понятия и определения термодинамики
- 2. Уравнение состояния
- 3. Параметры состояния

Рекомендации по изучению темы:

Вопрос изложен в главе 1 учебника [1] на стр. 5 - 13.

Тема 2. Первое начало термодинамики

Основные вопросы темы:

- 1. Первое начало термодинамики
- 2. Простейшие термодинамические процессы
- 3. Теплоемкость

Рекомендации по изучению темы:

Вопрос изложен в главе 1 учебника [1] на стр. 13 – 20.

Тема 3. Второе начало термодинамики

Основные вопросы темы:

- 1. Втрое начало термодинамики
- 2. Цикл Карно
- 3. КПД цикла Карно
- 4. Неравенство Клазиуса

Тема 4. Энтропия

Основные вопросы темы:

- 1. Энтропия
- 2. Основное уравнение термодинамики для равновесных процессов
- 3. Вычисление энтропии
- 4. Третье начало термодинамики

Рекомендации по изучению темы:

Вопрос изложен в главе 1 учебника [1] на стр. 21 – 31.

Тема 5. Термодинамические функции и тождества

Основные вопросы темы:

- 1. Внутренняя энергия
- 2. Свободная энергия
- 3. Энтальпия
- 4. Термодинамический потенциал Гиббса
- 5. Химический потенциал

Рекомендации по изучению темы:

Вопрос изложен в главе 1 учебника [1] на стр. 33 – 43.

Тема 6 Условия равновесия и фазовые переходы

Основные вопросы темы:

- 1. Условия равновесия однородной системы
- 2. Условия равновесия двухфазной однокомпонентной системы
- 3. Условия равновесия многокомпонентной гетерогенной системы
- 4. Правило фаз Гиббса
- 5. Фазовый переход первого рода
- 6. Фазовый переход второго рода

Рекомендации по изучению темы:

Вопрос изложен в главе 1 учебника [1] на стр. 43 – 52.

Тема 7. Термодинамика необратимых процессов 1

Основные вопросы темы:

- 1. Понятие потоков (поток тепла, поток вещества)
- 2. Уравнение для потока энергии
- 3. Уравнение для потока вещества
- 4. Теорема о производстве энтропии

Рекомендации по изучению темы:

Вопрос изложен в главе 1 учебника [1] на стр. 52 – 58.

Тема 8. Термодинамика необратимых процессов 2

Основные вопросы темы:

- 1. Термодинамическая сила
- 2. Неравновесные процессы теплопередачи и диффузии
- 3. Основы теории неравновесных процессов Онзагера

Рекомендации по изучению темы:

Вопрос изложен в главе 1 учебника [1] на стр. 58 – 63.

Тема 9. Теорема Лиувилля

Основные вопросы темы:

- 1. Основные понятия и предмет статистической физики
- 2. Теорема Лиувилля
- 3. Функция распределения и интеграл движения

Рекомендации по изучению темы:

Вопрос изложен в части 2 учебника [1] на стр. 71 – 77.

Тема 10. Каноническое распределение

Основные вопросы темы:

- 1. Микроканоническое распределение
- 2. Каноническое распределение
- 3. Вычисление статистического интеграла

Рекомендации по изучению темы:

Вопрос изложен в части 2 учебника [1] на стр. 77 – 83.

Тема 11. Распределения Максвелла и Больцмана

Основные вопросы темы:

- 1. Расчет средней энергии идеального газа
- 2. Совпадение среднего и вероятностного значений физической величины
- 3. Связь распределения Гиббса и распределений Максвелла и Больцмана
- 4. Распределение Максвелла
- 5. Распределение Больцмана

Рекомендации по изучению темы:

Вопрос изложен в части 2 учебника [1] на стр. 83 – 92.

Тема 12. Статистические аналоги термодинамических потенциалов

Основные вопросы темы:

- 1. Статистический аналог энтропии
- 2. Статистический аналог свободной энергии
- 3. Уравнение состояния идеального газа
- 4. Формула Больцмана

Рекомендации по изучению темы:

Вопрос изложен в параграфе 4.3 учебника [1]. (стр. 257-264)

Тема 13. Флуктуации

Основные вопросы темы:

- 1. Флуктуации
- 2. Броуновское движение
- 3. Расчет точности простейшего измерительного прибора
- 4. Расчет флуктуаций термодинамических величин

Рекомендации по изучению темы:

Вопрос изложен в части 2 учебника [1] на стр. 102 – 111.

Тема 14. Излучение нагретых тел

Основные вопросы темы:

- 1. «Ультрафиолетовая катастрофа»
- 2. Формула Планка
- 3. Теплоемкость твердых тел. Теория Эйнштейна
- 4. Теплоемкость твердых тел. Теория Дебая

Рекомендации по изучению темы:

Вопрос изложен в части 2 учебника [1] на стр. 111 – 123

Тема 15. Статистика Бозе-Эйнштейна

Основные вопросы темы:

- 1. Три вида статистик
- 2. Большое каноническое распределение
- 3. Вывод функции распределения для бозонов
- 4. Конденсация Бозе-газа

Рекомендации по изучению темы:

Вопрос изложен в части 2 учебника [1] на стр. 123 – 129.

Тема 16. Статистика Ферми-Дирака

Основные вопросы темы:

- 1. Вывод функции распределения для фермионов
- 2. Выполнимость принципа соответствия
- 3. Графический анализ функции распределения Ферми-Дирака
- 4. Расчет энергии Ферми
- 5. Теплоемкость электронного газа

Рекомендации по изучению темы:

Вопрос изложен в части 2 учебника [1] на стр. 130 – 138.